
15 Minute Guide to SSH Security
johnny@ihackstuff.com

http://johnny.ihackstuff.com
- Page 1 -

Many people rely on secure shell (SSH) as a method of securing terminal connections
between hosts. I personally use SSH to connect to my servers because of the simple
fact that my username, password and my entire session are encrypted, safe from prying
eyes.

“Secure Shell (SSH) is a program to log into another computer over a network, to
execute commands in a remote machine, and to move files from one machine to
another. It provides strong authentication and secure communications over
unsecure channels. It is intended as a replacement for rlogin, rsh, and rcp.
“http://www.kleber.net/ssh/ssh-faq-1.html#ss1.1

Understanding the problem

When you connect to an SSH server for the first time, the server will send you it’s public
key. Although this will present itself in various ways depending on the version of the SSH
client used, a message similar to the one displayed by putty will be displayed:

Figure 1: PuTTY security alert

This message indicates that the SSH client has not cached the fingerprint of this server’s
key. According to the SSH client, you are essentially connecting to a “new” host. If you
are at all interested in security, you should only cache the fingerprint of each server once
you’ve manually validated that fingerprint. I will discuss manual validation later. It is
important to understand that simply put, a key fingerprint confirms the identity of your
SSH server. If you do not cache, or record the fingerprint, your SSH client has no way of
knowing if the server you are connecting to is the same server it connected to the last
time.

Let’s assume for a moment that you have already validated and cached the key
fingerprint for a server. If the key fingerprint for that server ever changes, the SSH client
will alert you with a message similar to the one shown in Figure 2.

15 Minute Guide to SSH Security
johnny@ihackstuff.com

http://johnny.ihackstuff.com
- Page 2 -

Figure 2: PuTTY detecting a changed key fingerprint

As an SSH user interested in conducting a secure transaction with an SSH server, you
should never simply click anything but ‘cancel’ to any of the messages listed above,
regardless of the SSH client you are using. Validating the fingerprint of your SSH server
is of utmost importance. Why? Because if you don’t you may be choosing to trust a
malicious user with your SSH username and password!

Addressing the problem – Manual fingerprint validation

Before agreeing to cache (and therefore trust) a fingerprint, you should first verify that
the fingerprint is valid. The procedure for validating an SSH key fingerprint is fairly
straightforward, but it will require local access to the SSH server. Although this may
seem awkward in this age of networking, this is a critical element in maintaining absolute
trust in your SSH connection. The good news is that this procedure does not need to be
performed frequently and that there are some halfway options that can be exercised,
including running a cron job to post the fingerprint on an SSL-authenticated web page
every so often. Understand however, that convenience options tend to cause security
weaknesses. Don’t make it easier for an attacker when trying to make your own life
easier.

15 Minute Guide to SSH Security
johnny@ihackstuff.com

http://johnny.ihackstuff.com
- Page 3 -

Verifying the fingerprint of a Linux-based SSH server

1. Log onto the server using a local connection, such as a console.
2. Determine the location of your server’s public SSH keys. One common

location is in the /etc/ssh/ directory.
3. Run ssh-keygen with the –l and –f options against your server’s public key.

The command line may read

ssh-keygen –l –f /etc/ssh/ssh_host_key.pub

4. This is the server’s host key fingerprint. It may look like this:

1024 59:c7:83:9e:57:97:61:47:2f:04:da:50:98:b1:3e:85

This output should match the fingerprint that your SSH client produced when you first
connected. If it doesn’t match, you’ve got issues! Let’s take a look at some of the
reasons the key fingerprints may not match.

Problem Resolution
You inadvertently selected ‘No’ or ‘Cancel’
the last time you were prompted with this
message.

If this is the case, you did not cache the
key fingerprint. Since the SSH client has
no record of this fingerprint, it has alerted
you. After manually verifying the
fingerprint, choose ‘Yes’ to cache it.

You updated your SSH client or switched
to a different client since you last
connected to your SSH server.

Again, it is possible that you client has no
record of this fingerprint if you overwrote its
fingerprint cache. After manually verifying
the fingerprint, choose ‘Yes’ to cache it.

The SSH session is using a different
protocol version than was previously used.

SSH protocol 1 and 2 use different key
files. Make sure you are manually
fingerprinting the correct key file. Try
manually fingerprinting all the *pub files in
the server’s /etc/ssh directory.

You are being spoofed by a malicious user
or program... an interloper!

See below for more clues as to what may
be happening. Do not connect to the
server until you know you aren’t being
duped. Always ‘cancel’ the connection!

Detecting an interloper

If you absolutely positively can not get your key fingerprints to match and you’re sure
you’re checking the right server and keys, there’s a chance you’re the victim of an SSH
man-in-the-middle (MITM) attack. This attack subverts the normally secure SSH login
process and can lead to the compromise of your SSH session, username and password.
Securiteam has a great write-up on this vulnerability entitled “SSH Protocol Weakness
Vulnerability (MITM).” This write-up can be found at
 http://www.securiteam.com/securitynews/5BP0M157PG.html.

15 Minute Guide to SSH Security
johnny@ihackstuff.com

http://johnny.ihackstuff.com
- Page 4 -

In summary, this vulnerability allows an attacker sitting on your network to masquerade
as your SSH server via packet and ARP spoofing. When this happens, there is a good
chance that you can detect the attack by using a network sniffer like ethereal found at
www.ethereal.com. In order to understand how SSH normally behaves, let’s take a look
at a normal SSH client connect. For purposes of this exercise I will be using the PUTTY
SSH client available from http://www.chiark.greenend.org.uk/~sgtatham/putty/.

I will be using the following network configuration:

Description IP MAC
SSH Client 10.1.1.111 00-02-B3-1B-CA-34
SSH Client Default Gateway 10.1.1.1 00-40-10-13-b5-0e
SSH Server 216.133.72.171 not important
Attacker not important 00-02-B3-33-B1-B7

To gather this information:

• Run ifconfig –a in a UNIX environment or ipconfig /all in Windows to
determine the IP and MAC address of your SSH client (See Figure 3).

• Ping your default gateway and run arp –a to determine the MAC address of
your default gateway (See Figure 4).

• Record the IP address of your SSH Server for reference.

Figure 3: ipconfig /all output (Windows)

Figure 4: Determining the MAC address of the gateway with ping and arp

15 Minute Guide to SSH Security
johnny@ihackstuff.com

http://johnny.ihackstuff.com
- Page 5 -

Once this information has been gathered:
1. Launch ethereal and begin capturing packets in promiscuous mode.
2. Lauch your SSH client (putty for this example) and wait for the PuTTY security

alert as shown in Figure 1 or Figure 2.
3. Stop the Ethereal capture to view the network traffic.

Figure 5: Ethereal capture of normal SSH session

The capture used in Figure 5 shows a filtered capture. Although it is not necessary to
filter the capture, it can help to isolate an interesting connection. There are several ways
to isolate the SSH connection in ethereal. One way to apply an ethereal filter is to enter
a string in the filter field and click ‘Apply’ as shown in Figure 6. Another method requires
selecting an SSH packet (TCP port 22) by left clicking the packet in the top window, then
right-clicking the packet and selecting “Follow TCP Stream.” as shown in Figure 7.

Figure 6: Ethereal filter input

Figure 7: Ethereal 'Follow TCP Stream'
option

Once the filter is applied, and the proper TCP stream is selected, select the first packet
of the SSH stream (TCP port 22, your IP as the Source, your SSH server as the
destination) in the top window and select it by left-clicking the line. Turning your attention
to the middle window in Figure 5, notice that 10.1.1.111 (at MAC address
00:02:B3:1B:CA:34) is initiating a connection with 216.133.72.171 (at MAC
address 00:40:10:13:B5:0E) and that these MAC addresses correspond with our
SSH client and the default gateway respectively. When following through this TCP
stream, you will notice that these two MAC addresses exchange packets back and forth

15 Minute Guide to SSH Security
johnny@ihackstuff.com

http://johnny.ihackstuff.com
- Page 6 -

for the duration of this TCP connection. You are having an SSH conversation with your
SSH server through your default gateway. This is normal behavior.

If an attacker on your network is attempting a MITM attack against you, a network
capture will look very different as shown in Figure 8. Notice that now IP address
10.1.1.111 (at MAC address 00:02:B3:1B:CA:34) is initiating a conversation with
216.133.72.171 (at MAC address 00:02:B3:33:B1:B7!) The MAC address of the
default gateway has changed! We are now sending packets to a different MAC address!

Figure 8: MITM attack capture

This network shenanigans, combined with the fact that our SSH server’s host key
fingerprint has changed since the last time we used it means that we are being spoofed
by a malicious user. If you do anything but ‘cancel’ your SSH connection, that malicious
user will have your SSH username and password.

The magic: How the bad guys do it

The malicious user, sitting on the same network as the SSH client victim, fires up a
program like ettercap as shown in Figure 9.

15 Minute Guide to SSH Security
johnny@ihackstuff.com

http://johnny.ihackstuff.com
- Page 7 -

Figure 9: Ettercap launched

Using options designed specifically for the purpose of launching a MITM attack, ettercap
first launches ARP queries against every device on the subnet, in this case the local
class C, 255 addresses. Once ettercap has mapped the MAC address of every device
on the subnet, it proceeds to inform every device on the network (via ARP replies) that
the new MAC address to talk to is 00:0E:98:74:18:FA, the MAC of the attacker.
When a machine is updated with a new MAC address for an IP, it sends each packet
destined for that IP to the new MAC address, effectively fooling those machines into
sending the attacker packets that should be headed elsewhere. (See Figure 10)
Eventually, ettercap re-sends these ARP replies, effectively updating the bogus MAC
address on the other machines. In this way, the fooled machines continue to
communicate with the attacker instead other machines, or the default gateway. This is
called a man-in-the-middle and is the basic security flaw ettercap requires to perform it’s
magic.

Figure 10: ettercap scanning and spoofing

Once the network is mapped and the hosts on the network have been fed false ARP
information, ettercap enters a collection mode, waiting to capture passwords. If a client
on the same network as the attacker launches an SSH client to connect to the outside
world, ettercap spoofs a reply and a bogus key fingerprint to the SSH client, resulting in
a warning like the ones shown in Figure 1 and Figure 2. If the SSH user selects anything

15 Minute Guide to SSH Security
johnny@ihackstuff.com

http://johnny.ihackstuff.com
- Page 8 -

but ‘Cancel’ (a very, very bad thing to do!) ettercap will successfully man-in-the-middle
the connection with a bogus key fingerprint and display the password as show in Figure
11.

Figure 11: ettercap successful password capture

Because the MITM attack is so effective, ettercap can capture other secured usernames
and passwords such as those used to access secure web pages via SSL, the standard
for web security employed just about everywhere. We’ll take a look at how ettercap
works against SSL in a future paper. However, SSH and SSL aren’t the only protocols
that can be observed with ettercap. According to the ettercap man page, the tool can
also sniff usernames and passwords from “TELNET, FTP, POP, RLOGIN, SSH1,
ICQ, SMB, MySQL, HTTP, NNTP, X11, NAPSTER, IRC, RIP, BGP, SOCKS 5, IMAP
4, VNC, LDAP, NFS, SNMP, HALF LIFE, QUAKE 3, MSN, YMSG (other protocols
coming soon...)” In addition, ettercap has many other features. If you’re concerned about
the risk this tool poses, I suggest you download it to learn about it’s extensive list of
features.

Diving into the weeds (techies rejoice!)

If you’re into networking, you may have already figured out that the main security
weakness here (ARP spoofing) can be taken care of with static ARP entries on the client
machine. Static ARP entries are not overwritten by unsolicited ARP replies. Looking at
the ARP table shown in Figure 4, the ARP entry that is being abused is marked as
‘dynamic.’ We can update this by adding a static ARP entry for our default gateway with
the following command:

arp -s 10.1.1.1 00-40-10-13-b5-0e

When this command is run, the ARP table is updated with the address specified as
shown in Figure 12. Ettercap can no longer fake this entry in our ARP table.

15 Minute Guide to SSH Security
johnny@ihackstuff.com

http://johnny.ihackstuff.com
- Page 9 -

Figure 12: static arp entry

The question is, does this solve the problem? The answer is no. On the application side,
we quickly discover that our SSH host key fingerprint is still wrong. When we sniff our
SSH connection, we get something like what is shown in Figure 13.

Figure 13: ethereal capture with static client ARP entry

This odd capture seems to show that each response from our SSH server is duplicated.
What is not readily apparent is why this is happening. Looking closer at the capture we
discover that the replies are not duplicated, but that they are subtly different. Focusing
on the SYN|ACK replies, we will see that the first SYN|ACK comes from MAC
00:40:10:13:B5:0E (the gateway) and is sent to MAC 00:E0:98:74:18:FA (the
ettercap attacker). The second SYN|ACK comes from MAC 00:E0:98:74:18:FA (the
ettercap attacker) and is sent to MAC 00:02:B3:1B:CA:34 (the SSH client).

In essence, the session happens like this:

GATEWAY ==> ETTERCAP ==> CLIENT

Ettercap is acting as the man-in-the-middle. What ettercap can do with this packet
before sending it on to the client is up to ettercap. Generally speaking, though, ettercap
will do bad, bad things with the packet before passing it on. The entire conversation is
documented below. For the sake of brevity, some ACK and such have been omitted.

15 Minute Guide to SSH Security
johnny@ihackstuff.com

http://johnny.ihackstuff.com
- Page 10 -

First, the client starts the TCP handshake with a SYN packet to the gateway. Since the
client has the real MAC of the gateway, the packet is sent to the real gateway’s MAC
address:

CLIENT [SYN] =========> GATEWAY

Next, the gateway replies to the SYN with a SYN|ACK. However, the gateway has the
wrong MAC address for the client, thanks to ettercap. The reply goes to the ettercap
attacker first, and then ettercap forwards the reply onto to client:

GATEWAY [SYN|ACK]======> ETTERCAP ======> CLIENT

Any packet the client sends will always go to the real gateway, like this final ACK in the
TCP handshake:

CLIENT [ACK]==========> GATEWAY

The SSH server will reply with the server’s version of SSH. This reply, like all others, is
first delivered to the ettercap attacker then on to the client:

GATEWAY [SSH SERVER VERSION] ===> ETTERCAP ===> CLIENT

The client then sends the server information about the SSH client software and
capabilities:

CLIENT [SSH CLIENT INFO] ===> GATEWAY

Last, but not least, the final blow comes in the form of a spoofed SSH host key
fingerprint from ettercap. Ettercap snagged the real fingerprint in route and changed it to
a new fingerprint. This is necessary so ettercap can continue to read the SSH traffic
when it’s encrypted:

GATEWAY [SSH KEY PRINT] ===> ETTERCAP ===> CLIENT

At this point, if the client accepts the bogus key, any future communications with the
‘SSH server’ will really occur through ettercap, which can read the encrypted data. In
order to keep a real SSH session going, ettercap passes all the data through to the SSH
server using the real encrypted SSH channel which was negotiated with the real SSH
host key fingerprint, the username and the password.

Fixing the problem

There are several things that can be done to avoid becoming a victim to this type of
attack.

1. Heed the warning of new or different key fingerprints. Cancel the connection (do
not continue the connection with ‘yes’ or ‘no’ selections in your client).

2. Keep an eye on your ARP table wither manually with the ‘arp’ command or with a
watchdog program. The Linux and Mac OSX kernels have the ability to log these
malicious ARP requests. A cron job or something similar can be used to monitor
these kernel messages.

15 Minute Guide to SSH Security
johnny@ihackstuff.com

http://johnny.ihackstuff.com
- Page 11 -

3. Static ARP everything! This may not be practical, but if you have static ARP
tables on both your client and gateway, you can’t be spoofed from the local
network. Bear in mind that your remote network may be another story. Read on...

4. Always manually validate your SSH host key fingerprints at the server. No
amount of spoofing is going to fool a pure-and-simple manual validation.

5. Keep an eye out for “Gatekeeper,” soon to be released through my site. This
program will serve as a watchdog for your windows machine, alerting you when
your gateways’ MAC gets hosed.

